• API
  • 中文

0

Quantity Price

1 10 100 1000 2500 Updated
* LF198AH 4768 USD
* LF198H/NOPB 15576 USD
* LF198AH/NOPB 408 USD 20.74 19.14 16.34
* LF198AH/NOPB 1 USD
* LF198H/NOPB 1 USD
* LF198H 1 USD
* LF198H/883 1 USD
* LF198WG-QMLV 1 USD
* LF198H 1 USD
* LF198AH 1 USD
* LF198H/NOPB 1 USD
* LF198H 1 USD
* LF198H/883B 1 USD
* LF198H/883 1 USD
* LF198H-SMD 1 USD
* LF198H 1 USD
* LF198AH 1 USD
* LF198H/883 1 USD
* LF198H/883B 1 USD
* LF198H-SMD 1 USD
* LF198HMB 1 USD
* LF198FE 1 USD
* LF198H/883/NOPB 1 USD
* LF198H/883/NOPB 1 USD
* LF198WG-QMLV 1 USD
* LF198WG/883 1 USD
* LF198 1 USD
* LF198 1 USD
* LF198AH/NOPB 0 USD 19.77000 18.23100 15.56850
* LF198H/NOPB 0 CNY
* LF198H 0 USD
* LF198AH 0 CNY
* LF198H 7456 USD
* LF198AH/NOPB 7104 USD
* LF198H/883 1 USD 58.581
* LF198AH/NOPB 4 USD 8.200000 7.735849 7.297971
* LF198H/NOPB 7379 USD 13.803360 13.022038 12.284941
* LF198H 9937 USD
* LF198QML-SP 0
* LF198JAN 0
* LF198JAN-SP 0
* LF198QML 0
* LF198AH 4 USD
* LF198H 7468 USD

TI
Monolithic Sample and Hold Circuit

The LFx98x devices are monolithic sample-and-hold circuits that use BI-FET technology to obtain ultrahigh DC accuracy with fast acquisition of signal and low droop rate. Operating as a unity-gain follower, DC gain accuracy is 0.002% typical and acquisition time is as low as 6 µs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin and does not degrade input offset drift. The wide bandwidth allows the LFx98x to be included inside the feedback loop of 1-MHz operational amplifiers without having stability problems. Input impedance of 1010 Ω allows high-source impedances to be used without degrading accuracy.

P-channel junction FETs are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1-µF hold capacitor. The JFETs have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design ensures no feedthrough from input to output in the hold mode, even for input signals equal to the supply voltages.

Logic inputs on the LFx98x are fully differential with low input current, allowing for direct connection to TTL, PMOS, and CMOS. Differential threshold is
1.4 V. The LFx98x will operate from ±5-V to ±18-V supplies.

An A version is available with tightened electrical specifications.